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The three-order superexchange interaction usually neglected in the literature may result in different physics
in a triple quantum dot pierced by an external magnetic flux. It is shown that the third-order superexchange
interaction survives due to Aharonov-Bohm interference and induces a magnetically tunable Kosterlitz-
Thouless quantum phase transition between local singlet and triplet. This transition is demonstrated by a
Kondo resonance peak with a width depending exponentially on the distance to the critical point.
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I. INTRODUCTION

Semiconductor quantum dots �QDs� provide many oppor-
tunities for studying some fundamental physical phenomena,
such as quantum interference,1 Coulomb blockade, and the
Kondo effect.2,3 Recent attention has focused on quantum
phase transition in coupled double quantum dots �DQDs� and
triple quantum dots �TQDs�.4–15 In these itinerant systems,
the exchange interaction generated by superexchange mecha-
nism due to electron hopping plays an important role in de-
termining spin configuration of ground state. For instance, in
serial DQD systems, the localized moments on the dots ei-
ther form Kondo singlet with the conduction electrons in the
leads or they form a local spin singlet, depending on the
interdot hopping.5 In parallel DQDs, the interdot hopping
induces the local singlet-triplet transition and suppresses the
Kondo-assisted transport.14–16 In TQD systems, two-channel
Kondo effect, non-Fermi-liquid behavior, and local
quadruplet-doublet-singlet transitions have been found in
various ranges of interdot hopping.10,16 When multiple QDs
form a ring geometry, electrons traveling in a magnetic flux
pick up an Aharonov-Bohm �AB� phase.17 Therefore, the su-
perexchange process involving transfer of electrons may be
affected by the AB interference effect and new physics is to
be expected.

Generally, superexchange interaction is considered just in
the second-order perturbation theory which involves ex-
change of electrons between two orbitals each singly occu-
pied with opposite spins.18 The higher-order superexchange
interactions are very small and can be neglected. Especially,
the three-order superexchange �TOS� interaction has never
been considered because it vanishes in most of itinerant sys-
tems due to deletion of contributions from different TOS
processes among three orbitals. The simplest ring structure is
the triangular QD system, which has been realized
experimentally.19–21 In the present paper, we show that the
TOS interaction survives and induces interesting phenomena
in a TQD pierced by an external magnetic field �see Fig. 1�.
In the absence of magnetic field, the electron hopping be-
tween dots 2 and 3 induces a first-order local singlet-triplet
transition accompanied with an abrupt disappearance of
Kondo peak. When the magnetic flux is turned on, the TOS
interaction survives due to AB interference effect and above
singlet-triplet transition becomes Kosterlitz-Thouless �KT�

type. A universal scaling form determined by the width of
Kondo peak is observed. This device provides a way to de-
tect the TOS processes. It is noticeable that the combination
of Kondo and AB effects was also investigated in previous
work9 for a triangular TQD system with all three dots con-
nected to leads. However, three dots just share one electron
in Ref. 9 so that superexchange interaction between different
dots was not discussed.

This paper is organized as follows. The model and the
calculation algorithms are given in Sec. II. The local density
of state, the transmission probability, and the spin correlation
are described in Sec. III. Finally the discussion and conclu-
sion are given.

II. MODEL AND CALCULATION METHODS

The TQD system is described by the Hamiltonian

H = Hd + Hlead + Ht, �1�

Hlead = �
jk�

�kcjk�
† cjk�, �2�

Ht = �
jk�

Vkcjk�
† d1�, �3�

Hd = ��
i�

di�
† di� + U�

i

ni↑ni↓

− �
�

��t1d1�
† d2� + t2d2�

† d3� + t1d3�
† d1��e−i�/3 + H.c.� .

�4�

Here, Hlead is the Hamiltonian for the electrons in the left

FIG. 1. Triangular quantum dots attached to the leads. t1 and t2

denote the interdot hoppings.
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�j=L� and right �j=R� leads. Hd is the isolated TQD Hamil-
tonian and Ht is the tunneling Hamiltonian. di�

† and cjk�
† are

dot and lead creation operators, respectively. � and �k are
orbital energy on the dots and leads, respectively. t1 and t2
are interdot hoppings, U is the on-site Coulomb repulsion on
each dot. Vk is the tunnel matrix element between leads and
dots while � is the magnetic flux threaded the TQD ring.

The electronic transport is calculated using the numerical
renormalization-group method16,22 �NRG�. We assume a dis-
persionless conduction band with a half bandwidth D and a
constant density of state �0. The tunnel coupling between dot
1 and the leads �=2��0�Vk�2 is taken as a constant. The
conductance through the dots is calculated using the Land-
auer formula23

G =
2e2

h
� d�� � f���

��
	T��� , �5�

with the Fermi function f��� and the transmission coefficient

T��� = −
1

2
��

�

Im G11���� . �6�

Here the retarded dot Green’s function is defined as Gij��t�
=−i	�t�
�di��t� ,dj�

† �
. The magnetic moment 
 is defined as
the contribution of the TQDs to the total magnetic moment
of the system,22


2 = �kBT/�g
B�2 = �
Sz
2
 − 
Sz

2
0� , �7�

where ��T� is the magnetic susceptibility of the system, sub-
script 0 refers to the case without quantum dots, 
B is the
Bohr magneton, g is the g factor, and kB is the Boltzmann
constant. Sz is the z component of the total spin of the whole
system while 
 
 means the thermodynamic expectation val-
ues.

III. RESULTS AND DISCUSSION

In the following, the half bandwidth D of the leads is
taken as the energy unit. We focus on the strongly correlated
regime and take �=0.01, U=0.1, �=−U /2, and t1=0.01. For
�=−U /2 and half filling, the Hamiltonian H��+�� is trans-
formed to H�−�� because of particle-hole symmetry. There-
fore, we just discuss the cases for 0���� /2. Figure 2�a�
shows the transmission coefficient T��� at zero temperature
for �=0 and different t2. For small t2 �e.g., t2�0.008 374�,
besides two broad Coulomb peaks at �= 
U /2, we observe
two peaks at about �= 
0.005. Mediated by the antiferro-
magnetic correlations between dot 1 and dots 2 and 3, a
ferromagnetic Ruderman-Kittel-Kasuda-Yosida �RKKY� in-
teraction JRKKY�4t1

2 /U leads to a local triplet between dots
2 and 3. The peaks at �=JRKKY� 
0.005 result from the
process of annihilating �creating� an electron on dot 1 and
damaging the RKKY interaction. These peaks are similar to
the additional peaks in parallel TQD system,16 in which the
RKKY interaction is mediated by the antiferromagnetic
Kondo coupling between conduction and local electrons.
When t2 is larger than critical value t2c=0.008 375, dots 2
and 3 form a singlet and decouple from dot 1. In this case,
the TQD system is just the usual Kondo model with one

impurity, and the Kondo resonance is observed. In the re-
gime t2� t2c, the Kondo peak does nearly not change which
marks a first-order transition between the local triplet and the
singlet.

For nonzero magnetic flux �, the behavior of T��� for
small t2 is similar to that in Fig. 2�a�. However, for t2� t2c,
here t2c depends on � while the width of Kondo peak T�

depends exponentially on the distance to the critical point
�t2− t2c�. This feature in Fig. 2�b� indicates a KT transition at
t2c. In a multilevel dot system24 and in capacitively coupled
double quantum dots,25 the similar KT quantum phase tran-
sitions with an exponentially small energy scale are also ob-
served.

Figure 3�a� exhibits the characteristic energy scale T� de-
termined by half-width at half maximum of Kondo peak. The
behavior of T� in the regime t2� t2c and close to the critical
point t2c can be adequately described using an exponential
function T�=C exp�−A / �t2− t2c���, where the parameters C
�1 and ��0.385. The parameter A and the critical hopping
t2c depend on the magnetic flux � and have the values of
0.423, 0.549, 0.706, and 0.811, and 0.008 19, 0.008 01,
0.007 72, and 0.007 47 for �=� /16, � /8, � /4, and � /2,
respectively. The energy scale T� approaches zero more
slowly for larger magnetic flux � as t2 decreases to t2c. This
exponentially dependent energy scale T� is one of the char-
acteristics of KT transition.6,24 Figure 3�b� shows the NRG
result of the local spin correlation 
S2 ·S3
 between dots 2

FIG. 2. Transmission coefficient T��� at zero temperature for
�=0.01, U=0.1, �=−U /2, t1=0.01, and different interdot hoppings
t2 and �. In �a�, curves for t2=0.008 38 and 0.009 are almost
overlapping. In �b�, from wide to narrow peaks, t2=0.01 and t2

=0.009–0.008 in steps of 0.0002.
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and 3 for different �. For �=0, 
S2 ·S3
 is about 0.25 for
t2� t2c and −0.75 for t2� t2c. This abrupt change in spin
correlation at t2c=0.008 375 indicates a first-order triplet-
singlet transition. For ��0, with increasing t2, 
S2 ·S3

changes exponentially from 0.25 to −0.75. Obviously, there
is mixing between local singlet and triplet. This characteris-
tic of the KT transition is also found in models of two inter-
acting magnetic impurities coupled to a metallic host.6 The
behavior of 
S2 ·S3
 also demonstrates that the singlet-triplet
transition proceeds most slowly for �=� /2.

In order to explore the origin of the KT transition, we
analyze the ground state of the isolated TQD at half filling.
The dot Hamiltonian in the second-order perturbation theory
is written as

H2d = J1S1 · �S2 + S3� + J2S2 · S3, �8�

with J1=4t1
2 /U and J2=4t2

2 /U, where Si is the spin operator
of dot i. In the subspace with two up-spin electrons, the local
singlet �1
 and triplet �2
 of dots 2 and 3 have the configura-
tions

�1
 =
1
�2

d1↑
† �d2↓

† d3↑
† − d2↑

† d3↓
† ��0
 , �9�

�2
 =�2

3
�− d1↓

† d2↑
† d3↑

† +
1

2
d1↑

† �d2↓
† d3↑

† + d2↑
† d3↓

† �	�0
 .

�10�

Their energies are E1=−3U /2− �4t2
2+2t1

2� /U and E2
=−3U /2−6t1

2 /U, respectively. Obviously, as t2 increases
from t2� t1 to t2� t1, the local triplet transits to the local
singlet. When the leads are connected to the TQD, there
exists a first-order transition because there is no mixing be-
tween local singlet and triplet.6 Considering the effect of the
coupling between the dots and the leads, the critical point is
t2c=0.008 375, which is different from that for isolated
TQDs. This first-order transition is confirmed by the abrupt
appearance and disappearance of the Kondo peak �see Fig. 2�
on the two sides of the transition point.

The above result indicates that, in the second-order per-
turbation theory, the KT transition cannot be observed. We
consider the third-order perturbation process. The eigenstate
of Hd is ��
=�iai�i
, where �i
 is an eigenstate of

Hd
0 = ��

i�

di�
† di� + U�

i

ni↑ni↓. �11�

The perturbation of the energy �E of local singlet �1
 and
triplet �2
 is obtained by

�Eai = −
1

U
�
mj

Him� Hmj� aj −
1

U2 �
nmj

Hin� Hnm� Hmj� aj , �12�

where H�=Hd−Hd
0 and Hij� = 
i�H��j
. The shift in the energy

of local singlet �1
 and triplet �2
 is determined by

�Ea1 = −
4t2

2 + 2t1
2

U
a1 −

6�3t1
2t2 sin �

U2 ia2, �13�

�Ea2 = −
6t1

2

U
a2 +

6�3t1
2t2 sin �

U2 ia1. �14�

Obviously, there is mixing between local singlet and triplet
in the eigenstate ��

=a1


�1
+a2

�2
 with coefficients ai


 de-
termined by Eqs. �13� and �14�. Therefore, for ��0, the
transition in the whole system containing leads and TQD is
of the KT type.6 This KT transition is demonstrated by an
exponentially dependent width of Kondo peak T� in Figs. 2
and 3. The third-order perturbation process involves ex-
change of electrons among three quantum dots. Figure 4
shows that a configuration in the local triplet transfers to the
singlet state. In the intermediate states, three dots are singly
occupied, doubly occupied, and empty, respectively. There
are 24 ways of doing the similar exchange. For �=0, these
two processes in Figs. 4�a� and 4�b� have reversal contribu-
tions to the second term in Eq. �12� so that the TOS interac-
tion vanishes. For ��0, the TOS interactions survive be-
cause of AB interference effect in above processes.
According to Eq. �12�, the dot Hamiltonian Hd contains by
following three-order term H3d besides the second-order term
H2d

H3d =
12t1

2t2 sin �

U2 �S1xS2yS3z + S1yS2zS3x + S1zS2xS3y

− S1xS2zS3y − S1yS2xS3z − S1zS2yS3x� . �15�

In models of two interacting magnetic impurities coupled to

FIG. 3. �a� Characteristic energy scale T� determined by the
width of Kondo peak and �b� local spin correlation 
S2 ·S3
 as func-
tions of t2 for different �. Other parameters are the same as in Fig.
2. The dashed lines in �a� correspond to the simulant exponential
function in the text.
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a metallic host,6 if two impurities asymmetrically couple the
host, the singlet-doublet transition is of the KT type. In the
present model, H3d is transformed to −H3d under permutation
of any two dots. This means that dots 2 and 3 asymmetrically
couple dot 1. This asymmetric interaction resulting from
magnetic flux is the origin of the KT transition. Equations
�13�–�15� show that the mixing between local singlet �1
 and
triplet �2
 has the maximum at �=� /2. The NRG results in
Fig. 3 for the characteristic energy scale T� and the local spin
correlation 
S2 ·S3
 also indicates that the singlet-triplet tran-
sition proceeds most slowly for �=� /2.

In order to exhibit the low-temperature scenario of the
TQD system, Fig. 5 shows temperature dependence of the
total magnetic moment 
 defined in Eq. �7�. For �=0, at

high temperature T�0.02 �e.g., 4t1
2 /U�T�U�, each dot has

a free local spin of 1/2 and contributes 1/4 to 
2. Because
there is some possibility of double occupation in this regime,

2 is about 0.5 which is smaller than the maximum 3/4. With
decreasing T �e.g., T�0.001�4t1

2 /U� the interdot superex-
change interactions drive the triple dots to a singlet with

2�1 /4. In lower temperature T→0, for t2� t2c, dots 2 and
3 form a local triplet which couples to dot 1 antiferromag-
netically and leads to a doublet ground state of the whole
TQD system. For t2� t2c, dots 2 and 3 form a local singlet
and decouple from dot 1 while dot 1 is totally screened by
Kondo coupling, and a Kondo resonance is observed. For
��0 �e.g., �=� /4�, the local triplet-singlet transition is
continuous. For t2� t2c and far from t2c, dots 2 and 3 form a
perfect singlet and dot 1 is totally screened by conduction
electrons. For t2� t2c and near t2c, there is a mixing between
local triplet and singlet of dots 2 and 3. The total spin of dots
2 and 3 is not zero for a singlet so that there exists weak
coupling between dots 2 and 3 and dot 1. With decreasing T,
this coupling partially screens the spin of dot 1 and results in
a residual moment of about 0.2. In lower temperature T
→0 dot 1 is screened by Kondo coupling with the leads. For
t2� t2c and near t2c, the coupling between dots 2 and 3 and
dot 1 is strong enough, and completely screens the spin of
dot 1 so that Kondo screening cannot occur. Therefore the
Kondo effect originates from the competition between
Kondo coupling and above interdot coupling.

To summarize, we have investigated electronic transport
in triangular QDs pierced by an external magnetic flux. The
NRG results show that, in the absence of magnetic flux, there
is a first-order quantum phase transition between the local
triplet and the singlet as the interdot hopping t2 increases to a
critical point t2c. This transition is demonstrated by the
abrupt appearance and disappearance of the Kondo peak on
the two sides of the transition point, and is also confirmed by
the abrupt change in the local spin correlation 
S2 ·S3
 at t2c.
If the magnetic flux is turned on in the singlet side of the
transition, the width of the Kondo resonance peak exponen-
tially approaches zero as t2 is close to t2c. This behavior
indicates that the triplet-singlet transition is of the KT type.
Another characteristic of the KT transition is that, with in-
creasing t2, 
S2 ·S3
 changes exponentially from 0.25 of the
triplet to −0.75 of the singlet. This means that there is mixing
between local singlet and triplet. Above characteristic with
an exponentially small energy scale, and that with mixing
between singlet and triplet are also found in other KT tran-
sitions in other quantum dots or two impurity systems but
their origins are quite different.6,24,25 Based on the perturba-
tion theory for the isolated TQD, we find that the TOS inter-
action survives due to AB effect and results in the mixing
between the local singlet and triplet. The TOS interaction has
never been considered in the literature because it vanishes in
most itinerant electron systems. The KT quantum phase tran-
sition induced by the TOS interaction can be continuously
tuned by magnetic flux. For small magnetic flux, the transi-
tion proceeds faster as t2 approaches t2c while for �=� /2, it
proceeds most slowly.

It is noticeable that the calculations are performed in
strongly correlated regime U� t1 , t2 ,� and in half-filling
case, the qualitative results do not depend on the precise

FIG. 4. Two kinds of third-order superexchange processes in
triangular dots; up arrow and down arrow denote electrons with up
spin and down spin, respectively. In initial and final states, dots 2
and 3 form a triplet and a singlet, respectively. In �a� and �b�, elec-
trons travel in the TQD ring anticlockwise and clockwise,
respectively.

FIG. 5. Total magnetic moment of the TQDs as a function of
temperature T for different t2 and �. Other parameters are the same
as in Fig. 2.
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parameters. Recently, a triangular trimer of Cr ions on a gold
surface has been realized experimentally and Kondo effect
with a Kondo temperature TK�50 K has been observed.18

This fact provides a possibility in demonstrating our find-
ings. In experiment, the tunnel coupling �, t1, and t2 can be
tuned by varying the distance between Cr adatoms. The
Kondo temperature can be estimated by Haldane’s expres-
sion TK=0.182U��0JKexp�−1 /�0JK� with �0JK=8� /�U.
The parameters U=0.1 and �=0.01 in this paper and a band-

width D=105 K �Ref. 26� lead to TK�18 K which can be
easily realized experimentally.
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